Entropy-stable and entropy-dissipative approximations of a fourth-order quantum diffusion equation

نویسندگان

  • Mario Bukal
  • Etienne Emmrich
  • Ansgar Jüngel
چکیده

Structure-preserving numerical schemes for a nonlinear parabolic fourthorder equation, modeling the electron transport in quantum semiconductors, with periodic boundary conditions are analyzed. First, a two-step backward differentiation formula (BDF) semi-discretization in time is investigated. The scheme preserves the nonnegativity of the solution, is entropy stable and dissipates a modified entropy functional. The existence of a weak semi-discrete solution and, in a particular case, its temporal second-order convergence to the continuous solution is proved. The proofs employ an algebraic relation which implies the G-stability of the two-step BDF. Second, an implicit Euler and q-step BDF discrete variational derivative method are considered. This scheme, which exploits the variational structure of the equation, dissipates the discrete Fisher information (or energy). Numerical experiments show that the discrete (relative) entropies and Fisher information decay even exponentially fast to zero.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy-dissipative discretizations of nonlinear diffusive equations

We present numerical discretizations which preserve the entropy structure of the analyzed nonlinear diffusive equations. More precisely, we develop numerical schemes for which the discrete entropy is stable or even dissipating. The key idea is to ”translate” entropydissipation methods to the discrete case. We consider two situations. First, an implicit Euler finite-volume approximation of porou...

متن کامل

Entropy Dissipative One-leg Multistep Time Approximations of Nonlinear Diffusive Equations

New one-leg multistep time discretizations of nonlinear evolution equations are investigated. The main features of the scheme are the preservation of the nonnegativity and the entropy-dissipation structure of the diffusive equations. The key ideas are to combine Dahlquist’s G-stability theory with entropy-dissipation methods and to introduce a nonlinear transformation of variables which provide...

متن کامل

Existence Analysis of Maxwell-Stefan Systems for Multicomponent Mixtures

Positive solutions of nonlinear Dirichlet BVPs in ODEs with time and space singularities 40/2012 S. Simonov, H. Woracek Spectral multiplicity of selfadjoint Schrödinger operators on star-graphs with standard interface conditions 39/2012 Combining micromagnetism and magnetostatic Maxwell equations for multiscale magnetic simulations 36/2012 M. Bukal, E. Emmrich, and A. Jüngel Entropy-stable and ...

متن کامل

Entropy Stable Approximations of Nonlinear Conservation Laws

A central problem in computational fluid dynamics is the development of the numerical approximations for nonlinear hyperbolic conservation laws and related time-dependent problems governed by additional dissipative and dispersive forcing terms. Entropy stability serves as an essential guideline in the design of new computationally reliable numerical schemes. My dissertation research involves a ...

متن کامل

Fourth Order Diffusion Equations with Increasing Entropy

The general quasi-linear autonomous fourth order diffusion equation ut = −[G(u)uxxx + h(u, ux, uxx)]x with positive variable diffusivity G(u) and lower-order flux component h is considered on the real line. A direct algorithm produces a general class of equations for which the Shannon entropy density obeys a reaction-diffusion equation with a positive irreducible source term. Such equations may...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 127  شماره 

صفحات  -

تاریخ انتشار 2014